首页> 外文OA文献 >A framework for identifying genotypic information from clinical records: exploiting integrated ontology structures to transfer annotations between ICD codes and Gene Ontologies
【2h】

A framework for identifying genotypic information from clinical records: exploiting integrated ontology structures to transfer annotations between ICD codes and Gene Ontologies

机译:从临床记录中识别基因型信息的框架:利用集成的本体结构在ICD代码和基因本体之间传递注释

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Although some methods are proposed for automatic ontology generation, none of them address the issue of integrating large-scale heterogeneous biomedical ontologies. We propose a novel approach for integrating various types of ontologies efficiently and apply it to integrate International Classification of Diseases, Ninth Revision, Clinical Modification (ICD9CM) and Gene Ontologies (GO). This approach is one of the early attempts to quantify the associations among clinical terms (e.g. ICD9 codes) based on their corresponding genomic relationships. We reconstructed a merged tree for a partial set of GO and ICD9 codes and measured the performance of this tree in terms of associations’ relevance by comparing them with two well-known disease-gene datasets (i.e. MalaCards and Disease Ontology). Furthermore, we compared the genomic-based ICD9 associations to temporal relationships between them from electronic health records. Our analysis shows promising associations supported by both comparisons suggesting a high reliability. We also manually analyzed several significant associations and found promising support from literature.
机译:尽管提出了一些用于自动本体生成的方法,但是它们都没有解决集成大规模异构生物医学本体的问题。我们提出了一种有效集成各种类型本体的新颖方法,并将其应用于集成国际疾病分类,第九次修订,临床修改(ICD9CM)和基因本体(GO)。这种方法是基于临床术语(例如ICD9代码)之间对应的基因组关系来量化其关联的早期尝试之一。我们针对部分GO和ICD9代码重建了合并树,并通过将其与两个著名的疾病基因数据集(即MalaCards和Disease Ontology)进行了比较,以关联的相关性来衡量该树的性能。此外,我们将基于基因组的ICD9关联与电子健康记录中它们之间的时间关系进行了比较。我们的分析表明,这两个比较都支持有希望的关联,表明它们具有很高的可靠性。我们还手动分析了几个重要的关联,并从文献中找到了有希望的支持。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号